椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为? 答案:90度

问题描述:

椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为? 答案:90度

准线x=±a²/c,焦点c,中心为坐标原点
从而得出(2a²/c)/4=c,得出:a²=2c²
从而b²=a²-c²=c²
那么b=c,所以焦点与短轴围成的三角形为等腰直角三角形
所以45+45=90,建议画图最直观