若函数f(x)在点x=a处可导,则lim(h→0)[f(a+4h)-f(a-2h)]/3h=?

问题描述:

若函数f(x)在点x=a处可导,则lim(h→0)[f(a+4h)-f(a-2h)]/3h=?

把h趋于0写作h--0lim(h--0)[f(a+4h)-f(a-2h)]/3h=lim(h--0)[f(a+4h)-f(a)+f(a)-f(a-2h)]/3h=lim(h--0)(4/3)[f(a+4h)-f(a)]/4h+lim(h--0)(2/3)[f(a)-f(a-2h)]/2h=(4/3)f'(a)+(2/3)f'(a)=2f'(a)