一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是25.现从袋中任意摸出2个球.(1)若n=15,且摸出的2个球中至少有1个白球的概率是47,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望Eξ;(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?

问题描述:

一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是

2
5
.现从袋中任意摸出2个球.
(1)若n=15,且摸出的2个球中至少有1个白球的概率是
4
7
,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望Eξ;
(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?


答案解析:(1)根据题意设出黑球和白球的个数,列出关于概率的方程,解出两种球的个数,由题意知变量取值,根据对应的事件做出分布列,求出期望.
(2)设袋中有黑球个数,设从袋中任意摸出两个球,至少得到一个黑球为事件C,用摸出的2个球中至少有1个黑球的对立事件摸两个球没有黑球,表示出概率,得到结果.
考试点:离散型随机变量及其分布列;等可能事件的概率.


知识点:考查运用概率知识解决实际问题的能力,对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.