若函数y=g(x)是函数f(x)=log以a为底x的对数的反函数且满足f(9)=2,则g(-log以9为底2的对数)的值是
问题描述:
若函数y=g(x)是函数f(x)=log以a为底x的对数的反函数且满足f(9)=2,则g(-log以9为底2的对数)的值是
详解
答
函数f(x)=log以a为底x的对数的反函数是g(x)=a^x还有f(9)=2,就是loga(9)=2,解得a=3于是g(x)=3^x-log9(2)=log3²(2)=-1/2*log3(2)于是g(-log以9为底2的对数)=3^(-log以9为底2的对数)=3^【-1/2*log3(2)】=...