函数y=2cos2x+sin2x的最小值是_.

问题描述:

函数y=2cos2x+sin2x的最小值是______.

y=2cos2x+sin2x
=1+cos2x+sin2x
=1+

2
(
2
2
cos2x+
2
2
sin2x)
=1+
2
sin(2x+
π
4
)

2x+
π
4
=2kπ−
π
2
,有最小值1-
2

故答案为1-
2