是否存在一个实数k,使方程8x2+6kx+2k+1=0的两个根是一个直角三角形的两个锐角的正弦?

问题描述:

是否存在一个实数k,使方程8x2+6kx+2k+1=0的两个根是一个直角三角形的两个锐角的正弦?

设直角三角形两个锐角为α,β,则sinα,sinβ是方程8x2+6kx+2k+1=0的两个根.∵α+β=90°,∴sinβ=cosα根与系数的关系,得sinα+cosα=−3k4①sinαcosα=2k+18②①2-2×②得9k2-8k-20=0∴k1=2,k2=-109当k=2...