圆C1:x2+y2+4x-4y+4=0与圆C2:x2+y2-4x-10y+13=0的公切线有( ) A.1条 B.2条 C.3条 D.4条
问题描述:
圆C1:x2+y2+4x-4y+4=0与圆C2:x2+y2-4x-10y+13=0的公切线有( )
A. 1条
B. 2条
C. 3条
D. 4条
答
∵圆C1:x2+y2+4x-4y+4=0的圆心C1(-2,2),半径r1 =
1 2
=2,
16+16−16
圆C2:x2+y2-4x-10y+13=0的圆心C2(2,5),半径r2=
1 2
=4,
16+100−52
|C1C2|=
=5,
(2+2)2+(5−2)2
∵|r1-r2|<|C1C2|<r1+r2,
∴圆C1:x2+y2+4x-4y+4=0与圆C2:x2+y2-4x-10y+13=0相交,
∴圆C1:x2+y2+4x-4y+4=0与圆C2:x2+y2-4x-10y+13=0的公切线有2条.
故选:B.