设函数f﹙x﹚=x²-1,对任意x∈[2/3,+∞﹚,f﹙x/m﹚-4m²f﹙x﹚≤f﹙x-1﹚+4f﹙m﹚恒成
问题描述:
设函数f﹙x﹚=x²-1,对任意x∈[2/3,+∞﹚,f﹙x/m﹚-4m²f﹙x﹚≤f﹙x-1﹚+4f﹙m﹚恒成
的取值范围
答
把f(x)=x平方-1代入,得:x^2/m^2-1-4m^2(x^2-1)≤【(x-1)^2-1】+4(m^2-1)展开,消去4m^2,得:x^2/m^2-1-4m^2x^2≤x^2-2x-4把x^2项合并,常数合并,得:(1/m^2-4m^2-1)x^2≤-2x-3因为x≠0,所以1/m^2-4m^2-1≤(-2x-3)...