已知函数f(x)=asinx+bcosx(a、b不等于0)的最大值为2,且f(π/6)=根号3,求f(π/3) 要过程,谢谢

问题描述:

已知函数f(x)=asinx+bcosx(a、b不等于0)的最大值为2,且f(π/6)=根号3,求f(π/3) 要过程,谢谢

先将asinx+bcosx换成Asin(x+φ)的形式.得到f(x)=asinx+bcosx=√(a^2+b^2)sin(x+φ) 因为sin(x+∮) 的最大值值是1.所以√(a^2+b^2)=2.a^2+b^2=4,又因为 a/2+√3b/2=√3 得到a=0.b=2 剩下自己来吧