如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG. 求证:EG=CF.

问题描述:

如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.
求证:EG=CF.

证明:∵正方形ABCD,点G,E为边AB、BC中点,∴AG=EC,△BEG为等腰直角三角形,∴∠AGE=180°-45°=135°,又∵CF为正方形外角平分线,∴∠ECF=90°+45°=135°,∵∠AEF=90°,∴∠GAE=90°-∠AEB=∠CEF,在△AGE和...