如图2-3-14,已知△ABC中,∠B90°,AB=BC,D,E分别是AB,BC上的动点,且BD与CD相等,M是AC的中点,试探究在D,E运动的过程中,△DEM的形状是否发生改变,它是什么样形状的三角形?试就明你的结论.
问题描述:
如图2-3-14,已知△ABC中,∠B90°,AB=BC,D,E分别是AB,BC上的动点,且BD与CD相等,M是AC的中点,试探究在D,E运动的过程中,△DEM的形状是否发生改变,它是什么样形状的三角形?试就明你的结论.
答
结论:得到的三角形形状不变.且是等腰直角三角形.
证明:
据题可得.△ABC是等腰直角三角形.
因为M是AC中点.连接BM则BM为△ABC在AC边上的高线.且可以得到BM⊥AC,
则有:△MAB≌△MBC.且两个三角形都是等腰直角三角形.
∴∠MBD=∠MCE.∠DMB=∠EMC,且DM=EM.①
又∵BM⊥AC(前边得到的结论)
∴∠DME=∠DMB+∠BME,而∠DMB=∠EMC(上步所证)
∴∠DME=∠BMC=90° ②
综合①.②两个结论得到:△DME为等腰直角三角形.其形状不受CE.BD的大小而改变.