已知函数f(x)=sin(2x-π/6)-2cos(x-π/4)cos(x+π/4)+1,求f(x)的最小周期及在区间【0,π/2】上的值域

问题描述:

已知函数f(x)=sin(2x-π/6)-2cos(x-π/4)cos(x+π/4)+1,求f(x)的最小周期及在区间【0,π/2】上的值域

f(x) = √3/2*sin(2x) - 1/2*cos(2x) - (cosx + sinx)(cosx - sinx) + 1= √3/2*sin(2x) - 1/2*cos(2x) - cos(2x) + 1= √3[1/2*sin(2x) - √3/2*cos(2x)] + 1= √3sin(2x - π/3) + 1所以最小正周期为πx∈[0,π/2]...