设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为(  ) A.-log20102009 B.-1 C.((log2010200

问题描述:

设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为(  )
A. -log20102009
B. -1
C. ((log20102009)-1
D. 1

设过(1,1)的切线斜率k,f(x)′=(n+1)xn
则k=f(1)′=n+1,切线方程y-1=(n+1)(x-1)
令y=0,可得xn

n
n+1

X1X2X2009
1
2
2
3
• …
2009
2010
1
2010

log2010x1+log2010x2+…+log2010x2009=log2010X1• X2X2009log2010
1
2010
=−1

故选 B