设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限

问题描述:

设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限

注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)