设﹛Xn﹜满足-1<X0<0,Xn+1=Xn∧2+2Xn(n=0,1,2,…),证明﹛Xn﹜收敛,并求极限
问题描述:
设﹛Xn﹜满足-1<X0<0,Xn+1=Xn∧2+2Xn(n=0,1,2,…),证明﹛Xn﹜收敛,并求极限
答
Xn+1=Xn∧2+2Xn=(xn+1)^2-1>=-1xn有下界-1由于Xn+1=Xn∧2+2Xnxn+1-xn=xn^2+xn=xn(xn+1)所以Xn=Xn-1∧2+2Xn-1利用数学归纳x1=x0^2+2x0=(x0+1)^2-11.x1-x0=x0^2+x0=x0(x0+1)-1即xn+xn-1+2>0所以Xn+1-xn=(xn-xn-1)(xn...