等价无穷小在加减中替换的条件?
问题描述:
等价无穷小在加减中替换的条件?
答
加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的.用泰勒公式求极限就是基于这种思想.
举一个例子让你明白:
求当x→0时,(tanx-sinx)/(x^3)的极限.
用洛必塔法则容易求得这个极限为1/2.
我们知道,当x→0时,tanx~x,sinx~x,若用它们代换,结果等于0,显然错了,这是因为x-x=0的缘故;
而当x→0时,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它们也都是等价无穷小(实际上都是3阶麦克劳林公式),若用它们代换:tanx-sinx~(x^3)/2≠0,就立即可以得到正确的结果.