已知函数y=f(x)是定义在区间[-3/2,3/2]上的偶函数,且x∈[0,3/2]时,f(x)=-x2-x+5. (1)求函数f(x)的解析式; (2)若矩形ABCD的顶点A,B在函数y=f(x)的图象上,顶点C,D在x轴上,求矩

问题描述:

已知函数y=f(x)是定义在区间[-

3
2
3
2
]上的偶函数,且x∈[0,
3
2
]时,f(x)=-x2-x+5.
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图象上,顶点C,D在x轴上,求矩形ABCD面积的最大值.

解(1)当x∈[-32,0]时,-x∈[0,32].∴f(-x)=-(-x)2-(-x)+5=-x2+x+5.又∵f(x)是偶函数,∴f(x)=f(-x)=-x2+x+5.∴f(x)=−x2+x+5x∈[−32,0]−x2−x+5x∈(032].(2)由题意,不妨设A点在第一象限...