△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E. (1)判断直线EF与⊙O的位置关系,并说明理由; (2)如果BC=10,AB=12,求CG的长.

问题描述:

△ABC中,AC=BC.以BC为直径作⊙O交AB于点D,交AC于点G.直线DF⊥AC,垂足为F,交CB的延长线于点E.

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)如果BC=10,AB=12,求CG的长.

如图,连接OD,CD,BG,
(1)∵BC为⊙O的直径,
∴∠BDC=90°,
∵DF⊥AC,
∴∠AFD=90°,
∵AC=BC,
∴∠A=∠ABC,
∴∠BCD=∠ADF,
∵∠ADF=∠EDB,
∵OC=OD,
∴∠BCD=∠ODC,
∴∠ODC=∠EDB,
∴∠ODC+∠BDO=90°,
∴∠EDB+∠BDO=90°,
即∠EDO=90°,
∴OD⊥EF,
∴EF与⊙O相切,
(2)∵BC为⊙O的直径,
∴BG⊥AC,
∵∠A=∠ABC,
∴△ABG∽△BCD,

AB
BC
AG
BD

∵OD⊥EF,AC⊥EF,
∴OD∥AC,
∵OB=OC,
∴BD=AD,
∵AB=12,
∴BD=AD=6,
∵BC=10,
∴AC=BC=10,
12
10
AG
6

∴AG=7.2,
∴CG=AC-AG=10-7.2=2.8.