已知方程ax^2+bx-1=0(ab属于R且a>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围是多少

问题描述:

已知方程ax^2+bx-1=0(ab属于R且a>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围是多少
答案是(-1,正无穷).我想要一种简便点看得懂的解法

令 f(x)=ax^2+bx-1 ,由于 a>0 ,且 f(0)= -1因此 f(x)=0 必有两个不相等的实根.
如果两根中有一个根在区间(1,2),
那么 f(1)=a+b-10 ,
也即 a+b1 ,
则 a-b=(4a+2b)-3(a+b)>1-3= -2 ,
也即 a-b 的取值范围是(-2,+∞)