已知方程ax2+bx-1=0(a,b∈R且a>0,b>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围为(  )A. (-1,+∞)B. (-∞,-1)C. (-∞,1)D. (-1,1)

问题描述:

已知方程ax2+bx-1=0(a,b∈R且a>0,b>0)有两个实数根,其中一个根在区间(1,2)内,则a-b的取值范围为(  )
A. (-1,+∞)
B. (-∞,-1)
C. (-∞,1)
D. (-1,1)

设f(x)=ax2+bx-1=0,由题意得,f(1)<0,f(2)>0,
∴a+b-1<0,4a+2b-1>0.且a>0,b>0.
视a,b为变量,作出图象.
∴当直线a-b=t过A点时,t最大是1,
当直线a-b=t过B点时,t最小是-1,
∴-1≤t≤1.
选D.
答案解析:由题意知,一个根在区间(1,2)内,得关于a,b的等式,再利用线性规划的方法求出a-b的取值范围.
考试点:函数与方程的综合运用.
知识点:线性规划的介入,为研究函数的最值或最优解提供了新的方法,借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.