如图,⊙C经过坐标原点,并与两坐标轴分别交于A﹑D两点,已知∠OBA=30°,点A的坐标为(2,0),求点D的坐标和圆心C的坐标.

问题描述:

如图,⊙C经过坐标原点,并与两坐标轴分别交于A﹑D两点,已知∠OBA=30°,点A的坐标为(2,0),求点D的坐标和圆心C的坐标.

连接AD.
∵∠DOA=90°,
∴AD为直径,即点C在AD上,
由圆周角定理,得∠D=∠OBA=30°,
在Rt△OAD中,OA=2,
∴OD=2

3
,AD=4,
即圆的半径为2.
(1)因为OD=2
3
,所以点D的坐标为(0,2
3
);
(2)点C为AD的中点,故圆心C的坐标为(1,
3
);
故D点坐标为(0,2
3
),C的坐标为(1,
3
).
答案解析:根据直角坐标系的两坐标轴的垂直关系,连接AD,可证AD为直径;将已知圆周角∠OBA转化,即∠D=∠OBA=30°,在Rt△OAD中,解答本题的几个问题.
考试点:圆周角定理;坐标与图形性质.
知识点:此题主要考查了圆周角定理,解直角三角形,以及坐标与图形,充分发挥辅助线AD的作用,将已知条件集中到Rt△OAD中解直角三角形