设函数f(x)=x^2+1,对任意x属于[3/2,正无穷大],f(x/m)-4m^2f(x)≦f(x-1)+4f(m)恒成立.则实数m的取值范围

问题描述:

设函数f(x)=x^2+1,对任意x属于[3/2,正无穷大],f(x/m)-4m^2f(x)≦f(x-1)+4f(m)恒成立.则实数m的取值范围

把f(x)=x平方-1代入,得:x^2/m^2-1-4m^2(x^2-1)≤【(x-1)^2-1】+4(m^2-1)展开,消去4m^2,得:x^2/m^2-1-4m^2x^2≤x^2-2x-4把x^2项合并,常数合并,得:(1/m^2-4m^2-1)x^2≤-2x-3因为x≠0,所以1/m^2-4m^2-1≤(-2x-3)...