设函数f(x)=x3+mx2+nx+p在(-∞,0]上是增函数,在[0,2]上是减函数,x=2是方程f(x)=0的一个根. (1)求n的值; (2)求证:f(1)≥2.
问题描述:
设函数f(x)=x3+mx2+nx+p在(-∞,0]上是增函数,在[0,2]上是减函数,x=2是方程f(x)=0的一个根.
(1)求n的值;
(2)求证:f(1)≥2.
答
(1)f′(x)=3x2+2mx+n.
∵f(x)在(-∞,0]上是增函数,在[0,2]上是减函数
∴当x=0时,f(x)取到极大值.
∴f′(0)=0.
∴n=0.
(2)∵f(2)=0
∴p=-4(m+2)
f′(x)=3x2+2mx=0的两个根分别为x1=0,x2=-
2m 3
∵函数f(x)在[0,2]上是减函数,
∴x2=-
≥22m 3
∴m≤-3.
∴f(1)=m+p+1=m-4(m+2)+1=-7-3m≥2.