计算:(1−1/22)(1−1/32)(1−1/42)…(1−1/20042)(1−1/20052)

问题描述:

计算:(1−

1
22
)(1−
1
32
)(1−
1
42
)…(1−
1
20042
)(1−
1
20052
)

(1−

1
22
)(1−
1
32
)(1−
1
42
)…(1−
1
20042
)(1−
1
20052
)=
22−1
22
32−1
32
42−1
42
20052−1
20052
=
1
2
×
2006
2005
=
1003
2005