已知抛物线的极坐标方程为ρ=4/1-cosθ,求此抛物线的准线的极坐标方程
问题描述:
已知抛物线的极坐标方程为ρ=4/1-cosθ,求此抛物线的准线的极坐标方程
答
【1】我的方法是:先化为普通方程求解,再还原.【2】该抛物线普通方程为y²=8(x+2).易知,其准线方程为:x=-4.∴准线的极坐标方程为ρcosθ=-4.我就是不会还原的怎么还原?????普通坐标与极坐标关系:x=ρcosθ,y=ρsinθ你还原一次啊,我换不出来ρ=4/(1-cosθ).===>4=ρ(1-cosθ)=ρ-ρcosθ=ρ-x.===>ρ=x+4.===>ρ²=(4+x)²===>x²+y²=16+8x+x².===>y²=8(x+2).===>准线方程x=-4.===>ρcosθ=-4.