设函数f(x)=2sin(ωx+π6)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2)且点A(x1,f(x1))与点B(x2,f(x2))之间的距离为20,则ω的最小值为( ) A.π2 B.π C.2π D.π4
问题描述:
设函数f(x)=2sin(ωx+
)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2)且点A(x1,f(x1))与点B(x2,f(x2))之间的距离为π 6
,则ω的最小值为( )
20
A.
π 2
B. π
C. 2π
D.
π 4
答
∵f(x)=2sin(ωx+π6)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2),∴f(x1)=-2,f(x2)=2,又|AB|=(x2−x1)2+[f(x2)−f(x1)]2=(x2−x1)2+16=20,∴|x2-x1|=2≥T2,∴T=2πω≤4,∴ω≥π2.∴ω的最小值...