设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0,证明:a1,a2.am线性无关
问题描述:
设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0,证明:a1,a2.am线性无关
答
正定的定义
若 X != 0 则 X'AX>0
题目有误