证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.
问题描述:
证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.
答
题:证明任何一个n阶方阵都可以表示为一个对称矩阵和一个反对称矩阵之和,并且这种表示方式唯一的.证:以下A‘表示方阵A的转置.设方阵A=N+Z,其中N为对称矩阵,Z为反对称矩阵,即:N'=N,Z'=-Z.于是有A'=N'+Z'=N-Z.于是A+...