定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)
问题描述:
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)
(1).证明当x
答
证明:令x=0 y=0则f(0+0)=f(0)² 即f(0)-f(0)²=0因为f(0)不等于0所以f(0)=1 又令y=-x 则有f(x-x)=f(x)×f(-x)即f(0)=f(x)×f(-x) 即1=f(x)×f(-x) 所以f(x)与f(-x)互为倒数 即...