数列an ,a1=1,当n>=2时,an=(根号sn+根号sn-1)/2,证明根号sn是等差数列,求an
问题描述:
数列an ,a1=1,当n>=2时,an=(根号sn+根号sn-1)/2,证明根号sn是等差数列,求an
求详细过程
答
由于
an=sn-sn-1=(根号sn)^2-(根号sn-1)^2=(根号sn-根号sn-1)*(根号sn+根号sn-1)
=根号sn+根号sn-1)/2
上面等号两边同时约去(根号sn+根号sn-1)
可得(根号sn-根号sn-1)=1/2
所以根号sn是等差数列.
且由等差数列公式得
根号sn=1+0.5(n-1)=0.5(n+1)
所以sn=(1/4)(n+1)^2,sn-1=(1/4)n^2
所以an=sn-sn-1=(1/4)(2n+1),n>1
=1 ,n=1