已知关于X的方程X²-(M²+2M-3)X+2(M+1)=0的两个实数根互为相反数 (1)求实数M的值 ;

问题描述:

已知关于X的方程X²-(M²+2M-3)X+2(M+1)=0的两个实数根互为相反数 (1)求实数M的值 ;
(2)若关于X的方程X²-(k+M)X-3M-K-5=0的根均为整数,求出所有满足条件的实数k.

(1)由已知可得,方程有两不等的实根,两实根互为相反数,
则由韦达定理可得,x1+x2=-b/a=M²+2M-3=0,即(M+3)(M-1)=0
解得,M=-3或M=1
同时,须满足 x1*x2=c/a=2(M+1)1+2√2>3,或者k≤-2