设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示
问题描述:
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示
答
说明向量组a1,a2,a3,a4线性相关;即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(注由于这里不好写下标,在此声明k1,k2,k3,k4为系数)又因为a4不能由a1,a2,a3线性表示,所以不存在如下的等式关系:a4=c...