如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为(  ) A.4cm B.6cm C.8cm D.10cm

问题描述:

如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为(  )
A. 4cm
B. 6cm
C. 8cm
D. 10cm

∵AD平分∠CAB交BC于点D
∴∠CAD=∠EAD
∵DE⊥AB
∴∠AED=∠C=90
∵AD=AD
∴△ACD≌△AED.(AAS)
∴AC=AE,CD=DE
∵∠C=90°,AC=BC
∴∠B=45°
∴DE=BE
∵AC=BC,AB=6cm,
∴2BC2=AB2,即BC=

AB2
2
=
62
2
=3
2

∴BE=AB-AE=AB-AC=6-3
2

∴BC+BE=3
2
+6-3
2
=6cm,
∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).
另法:证明三角形全等后,
∴AC=AE,CD=DE.
∵AC=BC,
∴BC=AE.
∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.
故选B.