已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则1S1+1S2+1S3+…+1Sn=______.
问题描述:
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
+1 S1
+1 S2
+…+1 S3
=______. 1 Sn
答
∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=
,
n2+n 2
∴
=1 sn
,2 n(n+1)
∴
+1 S1
+1 S2
+…+1 S3
=2(1-1 Sn
+1 2
-…-1 2
)=1 n+1
,2n n+1
故答案为
.2n n+1
答案解析:根据点P(an,an+1)(n∈N*)在直线x-y+1=0上,求出an的通项公式,然后再求出sn的表达式,进而求得答案.
考试点:数列的求和.
知识点:本题主要考查数列求和的知识点,解答本题的关键是证明数列{an}是等差数列,然后求出等差数列的前n项和,然后在用裂项相消法求得
+1 S1
+1 S2
+…+1 S3
.1 Sn