已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则1S1+1S2+1S3+…+1Sn=______.

问题描述:

已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=______.

∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,
∴an+1-an=1,
∴数列{an}是等差数列,
∵a1=1,
∴sn=

n2+n
2

1
sn
=
2
n(n+1)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-…-
1
n+1
)=
2n
n+1

故答案为
2n
n+1

答案解析:根据点P(an,an+1)(n∈N*)在直线x-y+1=0上,求出an的通项公式,然后再求出sn的表达式,进而求得答案.
考试点:数列的求和.
知识点:本题主要考查数列求和的知识点,解答本题的关键是证明数列{an}是等差数列,然后求出等差数列的前n项和,然后在用裂项相消法求得
1
S1
+
1
S2
+
1
S3
+…+
1
Sn