一小滑块静止在倾角为37°的固定斜面的底端,当滑块受到外力冲击后,瞬间获得一个沿斜面向上的速度v0=4.0m/s.已知斜面足够长,滑块与斜面之间的动摩擦因数μ=0.25,sin37°=0.6,cos37°=0.8,

问题描述:

一小滑块静止在倾角为37°的固定斜面的底端,当滑块受到外力冲击后,瞬间获得一个沿斜面向上的速度v0=4.0m/s.已知斜面足够长,滑块与斜面之间的动摩擦因数μ=0.25,sin37°=0.6,cos37°=0.8,取g=10m/s2.求:
(1)滑块沿斜面上滑过程的加速度大小.
(2)滑块沿斜面上滑的最大距离.
(3)滑块返回斜面底端时速度的大小.

(1)设滑块质量为m,上滑过程的加速度大小为a,根据牛顿第二定律,有mgsin37°+μmgcos37°=ma所以,a=(sin37°+μcos37°)g=8.0m/s2(2)滑块上滑做匀减速运动,根据位移与速度的关系公得最大距离s=v022a=1.0m...