已知:抛物线y=x2-(m2+5)x+2m2+6. (1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0); (2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关

问题描述:

已知:抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0);
(2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;
(3)设d=10,P(a,b)为抛物线上一点.
①当△ABP是直角三角形时,求b的值;
②当△ABP是锐角三角形、钝角三角形时,分别写出b的取值范围(第②题不要求写出解答过程).

(1)令y=0,得x2-(m2+5)x+2m2+6=0,即(x-2)(x-m2-3)=0,解得:x1=2,x2=m2+3,∴一定有交点A(2,0),B(m2+3,0)∴结论得证;(2)∵A(2,0),B(m2+3,0)∴d=AB=m2+1;(3)①d=AB=m2+1=10,∴y=x2-14...