求极限lim(1-√cosx)/(1-cos√x) (x→0+)
问题描述:
求极限lim(1-√cosx)/(1-cos√x) (x→0+)
答
1-cost t²/2
lim(x→0+) (1-√cosx)/(1-cos√x)
1-cost t²/2
=lim(x→0+) (1-√cosx)/(x/2)
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (1-cosx)/[(x/2)(1+√cosx)]
=lim(x→0+) (x²/2)/[(x/2)(1+√cosx)]
=lim(x→0+) x/(1+√cosx)
= 0/2
=0