若log2[log12(log2x)]=log3[log13(log3y)]=log5[log15(log5z)]=0,则x、y、z的大小关系是(  )A. z

问题描述:

若log2[log

1
2
(log2x)]=log3[log
1
3
(log3y)]=log5[log
1
5
(log5z)]=0,则x、y、z的大小关系是(  )
A. z<x<y
B. x<y<z
C. y<z<x
D. z<y<x

∵log2[log12(log2x)]=log3[log13(log3y)]=log5[log15(log5z)]=0,∴log12(log2x) =log13(log3y)=log15(log5z)=1,∴log2x=12,log3y=13,log5z=15,∴x=2,y=33,z=55,∴z<x<y.故选A....
答案解析:由题意知log

1
2
(log2x) =log
1
3
(log3y)=log
1
5
(log5z)
=1,所以log2x=
1
2
log3y=
1
3
log5z=
1
5
,由此可知x、y、z的大小关系.
考试点:对数的运算性质.
知识点:本题考查对数的运算法则,解题时要结合题设条件注意公式的灵活运用.