已知log2[log1/2(log2x)]=log3[log1/3(log3y)]=log5[log1/5(log5z)]=0.求x2+y^3-z^5的值
问题描述:
已知log2[log1/2(log2x)]=log3[log1/3(log3y)]=log5[log1/5(log5z)]=0.求x2+y^3-z^5的值
答
log2[log1/2(log2x)]=0=log2(1)log1/2(log2x)=1=log1/2(1/2)log2(x)=1/2x=2^(1/2)log3[log1/3(log3y)]=0log1/3(log3y)=1log3(y)=1/3y=3^(1/3)x^6=2^3=8y^6=3^2=9所以y>xlog5[log1/5(log5z)]=olog1/5(log5z)=1log...