已知等差数列{an}满足:a3=7,S11=143 ,令bn=2^an(N属于N*),求数列{bn}的前n项和Tn

问题描述:

已知等差数列{an}满足:a3=7,S11=143 ,令bn=2^an(N属于N*),求数列{bn}的前n项和Tn

S11=143 =(a1+a11)/2*11=(a3+a9)/2*11,得到a3+a9=26,即a9=19,a3=7,得到an=2n+1,bn=2^an=bn=2^(2n+1)=2*4^n,在用等比数列前N项和公式算Tn

a3=a1+2d=7
S11=11a1+11*10*d/2=11a1+55d=143
{a1+2d=7,{a1+5d=13
解得,a1=3,d=2
an=a1+(n-1)d=2n+1
bn=2^(2n+1)
Tn=2^3+2^5+...+2^(2n+1)
=2^3*(1-4^n)/(1-4)
=[2^(2n+3)-8)/3