如图,抛物线y=ax2+bx+c与y轴正半轴交于点C,与x轴交于点A(1,0)、B(4,0),∠OCA=∠OBC.(1)求抛物线的解析式; (2)在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标;(3)如果⊙P过点A、B、C三点,求圆心P的坐标.
问题描述:
如图,抛物线y=ax2+bx+c与y轴正半轴交于点C,与x轴交于点A(1,0)、B(4,0),∠OCA=∠OBC.
(1)求抛物线的解析式;
(2)在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标;
(3)如果⊙P过点A、B、C三点,求圆心P的坐标.
答
知识点:本题是一道二次函数的综合题,要求学生能根据已知三点坐标求二次函数的解析式,把平行四边形的性质和平面直角坐标系点的坐标结合起来,在求⊙P的坐标时运用了抛物线的性质.是一道综合性较强的试题.
(1)∵∠AOC=∠COB,∠OCA=∠OBC,∴△AOC∽△COB,∴OC2=AO•BO=1×4=4,∴OC=2,∴C(0,2).(1分)由题意,设抛物线解析式y=a(x-1)(x-4).∴a(0-1)(0-4)=0,∴a=12.∴y=12x2−52x+2;(2分)(2)M...
答案解析:(1)要求抛物线的解析式,由题意知只需要求出点C的坐标即可,而点C的坐标可以根据△AOC∽△COB求得.
(2)要求点M的坐标,根据平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
(3)根据抛物线的对称性可知⊙P的圆心在对称轴上,再根据三角形外接圆的圆心到三角形三个顶点的距离相等得知PC=PA,根据两点间的距离公式可以求出点P的坐标.
考试点:二次函数综合题.
知识点:本题是一道二次函数的综合题,要求学生能根据已知三点坐标求二次函数的解析式,把平行四边形的性质和平面直角坐标系点的坐标结合起来,在求⊙P的坐标时运用了抛物线的性质.是一道综合性较强的试题.