计算(2+1)(2^2+1)(2^4+1).(2^2n+1)的值 注:a^b=a的b次方
问题描述:
计算(2+1)(2^2+1)(2^4+1).(2^2n+1)的值 注:a^b=a的b次方
答
2+1)(2^2+1)……(2^2n+1)
=(2-1)(2+1)(2^2+1)……(2^2n+1)/(2-1)
=(2^2-1)(2^2+1)……(2^2n+1)/1
=(2^4-1)(2^4+1)……(2^2n+1)
=……
=2^4n-1
答
用计算器按,,,
答
(2+1)(2^2+1)……(2^2n+1)
=(2-1)(2+1)(2^2+1)……(2^2n+1)/(2-1)
=(2^2-1)(2^2+1)……(2^2n+1)/1
=(2^4-1)(2^4+1)……(2^2n+1)
=……
=2^4n-1