在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
问题描述:
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
答
知识点:本题主要考查对平行四边形的性质和判定,等腰三角形的性质,矩形的判定等知识点的理解和掌握,能求出BE=DF和平行四边形AECF是解此题的关键.
(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,∠B=∠D,AB=CD,∵E、F分别是AB、CD的中点,∴BE=DF=AE=CF,在△BEC和△DFA中,BE=DF,∠B=∠D,BC=AD,∴△BEC≌△DFA.(2)答:四边形AECF是矩形.证明:∵四边...
答案解析:(1)根据平行四边形的性质推出BC=AD,∠B=∠D,AB=CD,求出BE=DF,根据SAS即可推出答案;
(2)证AE∥CF,AE=CF得到平行四边形AECF,根据等腰三角形的性质求出∠AEC=90°,根据矩形的判定即可推出答案.
考试点:矩形的判定;全等三角形的判定与性质;等腰三角形的性质;平行四边形的性质.
知识点:本题主要考查对平行四边形的性质和判定,等腰三角形的性质,矩形的判定等知识点的理解和掌握,能求出BE=DF和平行四边形AECF是解此题的关键.