如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为 ___ .

问题描述:

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为 ___ .
作业帮

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×2=2=23-2…∴第n个等腰直角三角形的面积是2n-2.∴S△AEF=24-2=4,S△AFG=...
答案解析:根据△ABC是边长为L的等腰直角三角形,利用勾股定理分别求出Rt△ABC、Rt△ACD、Rt△ADE的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个、第五个等腰直角三角形的面积,相加即可.
考试点:等腰直角三角形;三角形的面积;勾股定理.
知识点:此题主要考查学生对等腰直角三角形、三角形面积公式和勾股定理的理解和掌握,解答此题的关键是根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律.