计算:a(a+1)分之1+(a+1)(a+2)分之1+(a+2)(a+3)分之1+(a+3)(a+4)分之1+...+(a+2011)(a+2012)分之1.
问题描述:
计算:a(a+1)分之1+(a+1)(a+2)分之1+(a+2)(a+3)分之1+(a+3)(a+4)分之1+...+(a+2011)(a+2012)分之1.
尽量详细点,谢谢啦~~~
答
用裂项法:
1/[a(a+1)]=1/a-1/(a+1)
原式=1/a-1/(a+1)+1/(a+1)-1/(a+2)+...+1/(a+2011)-1/(a+2012)
=1/a-1/(a+2012)
=2012/[a(a+2012)]