设f(x)=log121−axx−1为奇函数,则a=______.

问题描述:

设f(x)=log

1
2
1−ax
x−1
为奇函数,则a=______.

∵f(x)=log121−axx−1为奇函数,∴f(-x)=-f(x),即f(x)+f(-x)=0,则log121−axx−1+log121+ax−x−1=log12(1−axx−1•1+ax−x−1)=0,即a2x2−1x2−1=1,即a2x2-1=x2-1,即a2=1,解得a=1或a=-1,当a=1...
答案解析:根据函数奇偶性的定义建立方程关系,求解进行验证即可.
考试点:函数奇偶性的判断.


知识点:本题主要考查函数奇偶性的应用,根据定义建立方程关系,结合对数的运算法则是解决本题的关键.