如图,在矩形ABCD中,AB=5,AC=7,现向该矩形ABCD内随机投一点P,求∠APB>90°时的概率.

问题描述:

如图,在矩形ABCD中,AB=5,AC=7,现向该矩形ABCD内随机投一点P,求∠APB>90°时的概率.

解析:记“∠APB>90°”为事件A
试验的全部结果构成的区域即为矩形ABCD,
构成事件A的区域为直径为5的半圆(图中阴影部分)
故所求的概率P(A)=

1
2
×(
5
2
)
2
π
35
56

故∠APB>90°时的概率为:
56

答案解析:先明确是一个几何概型中的面积类型,然后分别求得阴影部分的面积和矩形的面积,再用概率公式求两者的比值即为所求的概率.
考试点:几何概型.
知识点:本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率,还考查了定积分的应用在几何上的应用(求封闭图形的面积).