设P(x,y)是圆C:(x-1)^2+(y-1)^2=1上的点,则(y+1)/x的取值范围是
问题描述:
设P(x,y)是圆C:(x-1)^2+(y-1)^2=1上的点,则(y+1)/x的取值范围是
答
令
(y+1)/x=k
y=kx-1
代入圆方程,得
(x-1)²+(kx-1-1)²=1
x²-2x+1+k²x²-4kx+4=1
(k²+1)x²-(4k+2)x+4=0
△=(4k+2)²-4×4×(k²+1)
=16k²+16k+4-16k²-16
=16k-12
≥0
k≥3/4
即
(y+1)/x的取值范围是:
(y+1)/x≥3/4