设函数f(x)=2x-cosx,{an}是公差为π8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=______.

问题描述:

设函数f(x)=2x-cosx,{an}是公差为

π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=______.

∵f(x)=2x-cosx,
∴可令g(x)=2x+sinx,∵{an}是公差为

π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π
∴g(a1-
π
2
)+g(a2-
π
2
)+…+g(a5-
π
2
)=0,则a3=
π
2
,a1=
π
4
,a5=
4

∴[f(a3)]2-a1a52-
π
4
4
=
13π2
16

故答案为:
13π2
16

答案解析:由f(x)=2x-cosx,又{an}是公差为
π
8
的等差数列,可求得f(a1)+f(a2)+…+f(a5)=10a3,由题意可求得a3,从而进行求解.
考试点:等差数列的通项公式;等差数列的前n项和.
知识点:本题考查数列与三角函数的综合,求得cosa3=0,继而求得a3是关键,也是难点,考查分析,推理与计算能力,属于难题.