设lnX服从正态分布(1,2^2),求P{1/2扫码下载作业帮拍照答疑一拍即得
问题描述:
设lnX服从正态分布(1,2^2),求P{1/2 扫码下载作业帮
拍照答疑一拍即得
答
1(1)。 X (2)-1.6 E(X = 0.9
^ 2)=∫所述^ 2F(X)DX = {2A(X ^ 2-2X +2)E ^ X} {X = 0} = 2A
D()= E(X ^ 2) - [E( )] ^ 2 = 2A
那一刻估计“和”最大似然估计:“我不知道怎么翻译,讲义
更符合矩和杂木方法,我试探性地使用这两种方法做
E(倍)=∫XF(x)的DX =θ∫X ^θdx= {θ/θ(+1)×^(θ+1 )} {0
> L(θ)= F(X1)(X2)....(XN)= TTF(十一)
=θ^ nTTxi ^(θ-1)
LN(L(θ ))=lnθ* N + lnTTxi *(θ-1)
D [LN(θ)] /Dθ= N /θ+ lnTTxi = 0
θ= -n/ln(X1 * X2 * X3 ..... XN)最大似然估计值
答
lnX∽N﹙1,2²﹚ ∴﹙㏑x-1﹚/2∽N﹙0,1﹚
P{1/2
=Φ﹙﹙㏑2-1﹚/2﹚-Φ﹙﹙㏑﹙1/2﹚-1﹚/2﹚≈0.2427